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A new time step selection procedure is proposed for solving non-
linear diffusion equations. It has been implemented in the ASWR finite
element code of Lorenz and Svoboda [10] for 2D semiconductor
process modelling diffusion equations. The strategy is based on equi-
distributing the local truncation errors of the numerical scheme. The use
of B-splines for interpolation (as well as for the trial space) resultsin a
banded and diagonally dominant matrix. The approximate inverse of
such a matrix can be provided to a high degree of accuracy by another
handed matrix, which in turn can be used 10 work out the approximate
{inite difference scheme corresponding to the ASWR finite element
method, and further to calculate estimates of the lecal truncation efrors
of the numerical scheme. Numerical experiments on six full simulation
problems arising in semiconductor process modelling have been carried
out. Results show that our proposed strategy is more efficient and
better conserves the total mass. € 1993 Academic Press, Inc.

1. INTRODUCTION

In the numerical solution of time-dependent partial
differential equations {PDEs), suitable selection of the time
step size as well as the spatial mesh size (ie., the mesh
generation) is of crucial importance in ensuring good
accuracy. We shall address the first sclection problem in the
two-dimensional case (2D). For the seccond selection
problem, refer to [18] and the references therein. In the 1D
case a practical time stepping strategy for a particular time
stepping scheme has been discussed in [17], where we
presented numerical results for the solution of 1D nonlinear
scmiconductor diffusion equations, using both finite dif-
ference methods and finite element methods for the spatial
discretization,

Here we continue our study by extending previous 113
results to 21 nonlinear equations with particular reference
to semiconductor process modelling simulation. However,
48 is well known, diffusion equations may arise [rom a num-
ber of application areas, where a Fick’s type law applies. See
[2]. Therefore our technigues are applicable 1o the numeri-
cal solution of a wide class of problems. The new time
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stepping strategy has been implemented in the ASWR linite
element code of [10] and we report on the test results of
performance of the modified ASWR code on some fuli 2D
simulation problems. The code is capable of simulating,
among, other processes, 2D dopant diffusion of antimony,
arsenic, boron, and phoesphorus for either one dopant or
multiple dopants.

We first state the nonlinear diffusion equations which will
be considered here. For an e-dopant dilfusion problem in a
silicon medium €, the concentrations of dopants in € at
tine £ may be described by

C .
Trk =Div[D,grad C, + Z, Cpgrad @], k=1,..,1,

(1)

where C,=C,(x, y, 1} is the concentration for the &th
dopant, D, is the diffusion coefficient, Z, = + 1 depends on
the dopant used (—1 for singly ionized acceptors, +1 for
donors) and @ = @Y 7, C,} is the electrostatic potential.
Denote by C=3%}_, Z,C, the total concentration. Then
the potential function is calculated by & =log(n/n;,), where

n=3C+./C+4n})

1s the electron concentration and #, is the intrinsic electron
concentration at the process temperature. See [16]. As in
[10], the transformation of f, =log C, will convert {1) to
the system

3, .
iﬁ:g;&f&-

k=1, ..,r 2
at g 2)

where
L= D, gradi f, + Z,Py]
+grad f, -grad(f, + Z,®)

depends on /|, ..., /.. It is this system which we shall solve in
what foliows.
The time step selection is an important step in ensuring
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efficiency of numerical methods. There are not many
strategies that are readily available, In the literature on
solving nonlinear partial differential equations of parabolic
type, the traditional method of lines (MQOL) is usvally used
and the time step selection 15 determined by methods
adopted for solving the system of ordinary differential equa-
tions. See [4, 7, 8]. This means that in general we have to
solve a nonlinear system of algebraic equations for a typical
implicit time stepping {refer to Section 3). Even so, it is often
difficult to find a robust strategy for time stepping.

Consequently, for many practical codes it is common to
use fixed time step sizes or heuristic time step selection
procedures. For example, see [5, 12, 13].

Here, for a particular semi-implicit time stepping scheme
based on operator splitting, we propose a strategy for
automatic time step selection. The idea applies in principle
to other schemes as well. It is based on equidistributing iocal
truncation errors {LTEs) in both time and space discretiza-
tions. Therefore it is readily applicable to finite difference
methods since such error estimates can usually be found.
For finite element methods using a B-spline basis, we shail
show that good approximations to LTEs are always
possible so that our proposed strategy can be applied.

Other authors [6,7] have proposed to estimate the
temporal LTEs by finite differences at each time step,
comparing two numerical solutions with different time steps
(i.e., using Richardson’s extrapolation), and then choosing
time steps so that the temporal LTE at cach time step is
specified (fixed). These methods differ from our approach in
two aspects. First, we only compute one numerical solution
at each time step instead of two. Second, we equidistribute
the temporal LTE with respect to the spatial LTE rather
than fixing it throughout the time step history.

In Section 2 we discuss the finite element discretization of
(2). In Section 3 we introduce a three-level predictor-
corrector scheme for the temporal discretization and
linearization of (2) and further investigate its (linear)
stability property. In Section4 we use the idea of
approximate inversion to find an explicit and approximate
finite difference form of the underlying finite element
method, and then carry out the local truncation error
(LTE) analysis. Using the LTE estimates, we describe in
Section 5 two adaptive time stepping strategies, either of
which can automatically select the time step. Here the
second approach is designed specifically for conservation of
the total mass, which is of physical importance. Numerical
experiments on six full simulation problems are presented in
Section 6.

2, FINITE ELEMENT SOLUTION

For simplicity, let us assume that the domain of interest
is the unit square region &£ =1[0,1]x [0, 1]. The method
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can, however, be extended to the case of more general
boundaries. Divide the domain £ into ¥ x N boxes

Q=[x _ 1, x 3% [ Vet ¥m] bm=1,.,N). Then we
choose a Petrov-Galerkin finite method which uses as

test space,
S,=span{¢,, |, m=1,.,N},
and trial space,
S,=span{D; (i, k=0, ., N+1},
where

(x,y)e 2y,
otherwise,

1
Qslm = {0

and the D,’s are chosen from blending the 1D quadratic
B-spiines (as defined in [17),

Du(x, y)= B, B,(x)+ B;B(y)— B, By,
where

_ 1

F¥m
By, = Bi(») dy,
=), By
B ——I—I” B.(x) dx
T 3

and, for p =i, k and correspondingly z =x, y,

(2_2,072)2

(z,o_zp—l)(zp—] _Zp—z)
for zelz,_3,2,_.]
(Z—Zp—z)(zp“z)
(Zo—2zp_2Wzp—2z,_y)
o =Nz, )
(Zpr1—Zp_ Nz, —2,_ 1)
for ze(z,_,,z,]

+

(Zp+l_z}2
(zp+1*zp)(z,o+l_zp—l)
for ze(z,,2,,.]

The resulting finite element method (called the asymmetric

separated weighted residual or ASWR in [107]) finds the
solution

N+1 N+ 1L

= Z E ’xk.!jDij(x!y)a

i=0 j=0

for k=1,.,r. (3)
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from §, by solving

oF
<—"—5ko,(, >=0, VoesS,,
dt
Le.,
oF
j (—’Lg;ﬂ)dxdy:o, for k=1,.,r. (4)
am \ Ot

In general, {4) leads to a system of nonlinear equations for
the unknowns {o, .} (k=1,.,r4j=01,.,N+1)
However, as we shail see, only a linear algebraic system
needs to be solved il we use the semi-implicit time stepping
scheme described below.

3. A SEMI-IMPLICIT TIME STEPPING SCHEME

Let us consider a model equation of the one dopant case

g=D-Div(gradf)+(V1, V,)-grad f.

3 (5)

Then the generalization of the predictor corrector scheme of
[, Section 4] to the 2D case takes the following form:

= . ‘
—5 = D Divlgrad /") + (¥, V) -grad
(6)
fj+2 f_f )
T ———=D . Div(grad f/ ")+ (V,, V,) -grad f/

The above time stepping scheme (6), when appiied to
Egs. {1), leads to differential equations invelving essentially
the Laplacian operator which are known to be amenable
to the numerical conformal mapping methods for non-
rectangular domains [151 Also at each time level, only
linear solvers are needed to solve the resulting linear
systems.

To carry out a stability analysis of {6), we approximate
the space derivatives by finite differences leading to

Lo =L _ (85 35N five
o4 D Ax2+A2)f""'
(o)
2Ay
— ™
¥ ) fi+2
(w )f
+(V1 )f{yj;;es
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where the usual finite difference operators are defined by

8 =S it S in— Y s
R AES ST S S
LIVANES SR S
by f = omar—Fun s

We can analyse the stability of scheme (7). Here by
“stability” we mean that, given fixed 4x, Ay, and At
numerical errors of the time scheme will not be amplified.
The proof of stability essentially consists of showing that the
amplification factor is less than one (see [14] and note the
presence of the intermediate time level j + 8). We have

TreoreM 1 (2D stability). The predictor—corrector
scheme (7) is stable for any & >0, provided that

D D
vy

Proof. The complete proof is technical but not difficult.
We shall give an outline below. Using the von Neumann’s
analysis (i.e., writing errors in terms of Fourier expansions
on time levels j, j— @, and j+ 2}, we obtain the following
amplification factor (by comparing levels j and j+ 2 for the
Fourier exponent (8, v))

At < min (

RHS
“=1HS’ {8)
where
_ e ey
LHS=1+8{a,sin*2+¢,sin" =
27 2
4w, sin £+ w, sin n)i
1+ 40(o, sin’(£/2) + o, sin’(n/2))
86(w, sin & + w, sin 5)?
1 +48(a, sin*(&/2) + g, sin’(%/2))

withi=./—1, and

RHS =1+

n=7y Ay,
o,=D d1/4y°,

w, =V, 4f(24x),  w,=V, A/(24p).

We shall try to show that |u|* < 1. Let us denote by A=

o, sin?(¢/2)+ o, sin’(7/2) and B=(w, sinl+ w,siny)’.
Then it can be shown that

492(B—A)<%+(9—1)
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if 4t <min(D/V?, D/V3). On the other hand, (g < 1if

\ A A?

B A)<T g (B—-1)+4204+ 1) =
B B
A3 .-,A4

+ 166(8 + 2)—E+ 640 E

Therefore we have |u| <1 under the sufficient condition
stated and 8 > 0. The proof is complete. |

4, LOCAL TRUNCATION ERROR ANALYSIS

We shall now apply the finite element method of Section 2
to the model equation (5} combined with the time stepping
scheme (6) and further analyze the local truncation error.
Our direct analysis will also reveal the approximate finite
difference structure for the ASWR finite element method.
Estimates of truncation errors can be used in designing a
practical time step selection strategy (see Section 5}).

Integrating the corrector equation of (6} over the box
£2,., we obtain the ASWR equation

1

sl i =rhavdy

=D J Div(grad f/*?) dx dy

2,

+jﬂ (Vi, V,) grad /70 dx dy, ©)
tm

where /" =3 al, D,(x, y). Taking into consideration the
piecewise behaviour of D, we obtain

I+1 m+1 a,_v‘zl_a[k
¥ Yy = z Dy(x, y)dx dy
=1 k=m—1 ZA! jﬂ"""
i+1 m1
=D Y Y a/i*| Divlgrad D,)dxdy
i=l—1 k=m—1 Lm
F+3 m+ 1
+ 2 X a;;“‘j Vi, V2)
i={—1 k=m—1 i
x grad D, dx dy. (10)

Ox@®@xO
Ox x xO
o000

FIG. 1. Nine-point stencil for variable x.
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Now direct calculations of the above coefficients simplify
(10) to

S
7241

j+2 j+2 Jj+2 i+2
TSN . SN S S o 3 S

F+2 j+2 i+2 J+2 j+2
R Y - SR oI - FINE g B [T

42 itz iz itz
= (TR - S AR X VPR - N

34x?
it+2 i+ 2 2 J+2 _guf+2
SISk SRR - S S . T, 8y 2]
V, ) )
L i+ B
+ > Ax Lol e =&
j+e i+ i+6 i+
S H CTAFOENE AR B o SRl SR I
V2 s .
0 +0
+— (i} —af )
ZAy I+ 1lm+) f+1m—-1

i+ 8 i+ 8 P+ 8 et
+(a{jl,m+l—a{jl_m—l)+4(a{,:r+l—d‘fi.;fl)]’

(1)

where §,8/%?=p/*2— B/ The computational stencil of
nine points is shown in Fig. 1. To find the local truncation
error for {11j, we may use the Taylor theorem. Unfor-
tunately the unknowns («’s} are not the solution functions
{ ). They are only related to the solution by the following
interpolation relationship

{+1 m+1
YooY alDud Ry )=t Fn ) (12)
j=0—-) k=m-—1

where (X,, 7,,,) 1s taken to be the centre point of box €, for
I, m=1,..,N. For the Dirichlet boundary condition
i1, X, ¥)) s =0, the above system may be written as

U, U, . >
U, U, U, O‘i,x 1.1
Focr':—l— - %) 2 fia
=23 U. U. . a
1 2 1 ar f‘t )
U, U, NN NN
(13)
where
6 1
1 7 1
U, = ) T .
1 7 1
1 8/
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3 7
7 40 7
Uz-_- ' . . s
740 7
7 23
27 6
6 33 6
Uy= ’ EP
6 33 6
6 27

The matrix F can be seen to be diagonally diagonally domi-
nant and in block tridiagonal form. The elements of the
inverse of such a matrix are known to decay exponentially
to zero in magnitude away from the main diagonal. Refer to
M3, 111

By calculating the inverse F~' numerically, we can
express the unknowns o] ’s in terms of the solution (RHS
vector) f; 's. Here we propose to use a band approxirmation
of F~1 to solve Eq. (13) by neglecting those subdiagonal
entries of F~! away from the main diagonal which are less
than some small positive number ¢ in magnitude. This
enables us to express accurately the af,’s in terms of local
f1s. For (13), such an approximation is given by (taking
e=10"7%)

0= 10T =133 s H f st st firsm)
—185(f (et S i tme 2 T2
Ffvimer T icsmo F i aman
S vame1t ftraman)
83 2t a2 T iz F F i 2m)
820t S
e tme S himan)
= 38300 1 Sl F i s L)

2060077 ,. (14)

The compuiational stencil of 25 f points for each «j, is
shown tn Fig. 2. The availability of s (for 7=
J+6,j+2)from (14) allows us to work out the local trunca-
tion error of (11) in a straightforward manner. This has

been found to be

T(tj, X[, }_}m)zR() Af'{"R“ Ax2+R12 Ax Ay

+Rp A+ -, (15)

OO x OO0
Oxx x0OO0O
X X X X X O
x Xx X X x O
Ox x x OO
OO x 000

X X %@ X X X

O 0 0O O 0O

FIG. 2. Twenty-five-point stencil for variable £ (with each ).
where
RD = El - GEz;
E —(V 0,2 )2f DAV,
1= 1 ax 2 ay iy

& a\?
2= e V,—
E- (Vl ax+ Zay) f

ay
R eV
Ru —?5x€4gv2’

In a typical semiconductor diffusion model, the potential
term @ is also present and the equation corresponding to
(3) is of the following form;

%{: D Div(grad{f+ Z®))

+[(P,, 7))+ ZD grad ] grad /. (16)

The above equation may be identified with (3) with the
perturbation of f— f+ Z® and V, =V, + ZD(d®/dx) and
V,=V,+ ZD{0d/5y). Therelore the time step selection
strategies of the next section can be used for solving
Eq. (16). In order to apply our model analysis to the full
nonlinear equation

%{: Div[D grad(f + Z®)]

+ D grad f - grad( f + Zd), (17)

local linearizations have to be intreduced. For example, the
diffusion coefficient D may be viewed as locaily constant
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and (¥, V,}= D grad(f + Z&) so that results of the linear
analysis are applicable. We next consider the selection of the
time step At based on these truncation error estimates.

5. TIME STEP SELECTION

The automatic selection of the time step At follows the
principle that the temporal error (4r term) should be of
comparable magnitude to the spatial discretization error
(dx and Ay terms). In this way, the overall error is deter-
mined only by the spatial discretization accuracy.

Apart from using the errors in certain equation variables,
we shall also consider the relative mass balance error. This
quantity is defined at time ¢ by

Z(MrﬁMU)

0= (18)

where M, and M, denote the total mass present in the
silicon at times 0 and 1, respectively. Here the total mass at
time 1 =, based on the numerical solution f7, is defined by

M,=J Ci(x, ¥) dxdysj expl f(x, v)] dx dv. (19}
2 Lyl

Ideally we wish to have mass conservation of the total mass
M,, which is of physical importance. By this we mean that
M, = M, at any time ¢. If the underlying PDE is in conserva-
tion form such as (1} in C, then most numerical methods
(including the Euler scheme) for solving such an equation
will conserve the total mass. But our transformed PDE (2)
in fis not in conservation form. Conservation of mass in f
as well as in C=explf) cannot be maintained, in general.
We hope to conserve the mass as much as possible numeri-
cally by svitably choosing the time step 41, given a priori
spatial discretizations.

5.1. Error Control in f

This approach, as introduced in [ 1, Section 4.4, is to use
the transformed equation (3} in the variable £ For Eq. (5},
the time step selection based on (15} should satisfy

At < TOL/max | R,], (20}
where TOL. is chosen to be proportional to the estimate of
IR Ax*+ R Ax Ay + R,, 4y%). Of course, the above

choice should also be subject to the stability condition of
Theorem | being satisfied.

5.2. Mass Error Control in C

The idea here is first to relate the local truncation error of
Section 4 to the dopant mass error, and then to identify
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contributions from temporal and spatial discretizations in
such a mass error in order to select an appropriate time step.
Assume that stability is satisfied throughout our calcuia-
tions. Then the following relation holds for the global error
== Ko+ 0(49), (21}
where /= f(x, y, 1, ,) and f/*? represent respectively the
exact and numerical solution at time level j+2, K is a
stability constant, 1 is the locai truncation error (see (15)),
and (A%} denotes the negligible high order error terms.
Note from Section that C=exp(/f) and C/ 1> =exp(f/*?).
Taking the exponential of both sides of (21) gives rise to
C=C/*2explKr+0(4:7)]. (22)
Now integrate both sides of (22) over the entire domain to
obtain

Mo=M,+ [ exp[f'**]
2

x {exp[ Kt + O(41*)) — 1} dx dy, (23)
where we have used the definitions of (18) and (19).

We shall try to conserve the total mass, 1.., to minimise
M, — M, while ailowing the [argest possible time step 4t for
efficiency. Define the mass error (ME) by

ME=M,—M,=| exp[f/**]
Q

x {exp[ Kt + O(4¢?)] — 1} dx dy (24)
whose leading term on expansion is
ME, = Kj exp[ f/1(Ro At +SEYdx dy,  (25)
o

where substitution of (15} has been performed and the
spatial error is denoted by SE= R, Ax> + R, dx Ay +
R, Ay*. More specifically, Eq. (25) can be rewritten as

ME, = K(ME, + ME,), (26)

with ME, = 4t [, exp[ /1 Ry dx dy and ME, = |, exp[ /]
SE dydy representing mass error contributions from
remporal and spatial discretizations, respectively.

The strategy based on C mass error control is therefore to
equidistribute the total mass error ME in time and space by
forcing

ME,=ME,,
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ie., by selecting the time step

Az:j expl /'] Sdedy/f expl /7] Ry dx dy. (27)

5.3. Choice of the Predicior Step

The choice of the predictor step may be arbitrary as far
as the stability of the predictor corrector scheme (6) is
concerned (see Theorem 1). The idea here is to minimise
in some sense a measure of the solution error. We have
considered two approaches.

The first approach is based on minimization of the local
truncation error. As # is a constant appearing in the
pointwise local truncation error estimates, we cast the
problem of choosing 4 as a minimisation problem in the
least squares sense. This minimization is only for | R, since
the minimization of T of (15) would require a knowledge of
At that we do not have at this stage. Let us rewnite R, as
a,, — b, at point (%, 7,,), where a,,, = E, and b, = E; (see
{135)). Construct a guadratic function of 8 as

N N
PO)= 3 ¥ (a, 0b,,)

m=1 j=1

N N

=§? ('El ,-§1 b;zm) — 26 (él ,-i ajmbfrV!)

=1

N N
+ 3 ¥ a, (28)
m=1 j=1
The solution of mimimizing P(0) is generally given by
N N N N
=3 T anha T T (9
m=1 j=1 m=1 j=1

However, we are only interested in positive 6* which is only
possible if X% _, %" | a,,b;,>0. Otherwise we have to
look for the smallest positive # which minimizes [Ry|
pointwise or simply fix &. If the choice of fixed 8 =1 is used,
then the time stepping scheme resembles the more conven-
tional three-level scheme (refer to [6, 14]).

The second approach is to track the mass balance history
and dynamically adjust # from step to step in order to
achieve mass conservation; see [10]. To illustrate, let us
define at time 7 = ¢, the approximate total mass in the silicon
medium Q by

N N
mo=3 Y exp[X, ¥, )] dx, 4y, (30)

{=1 m=1
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and the relative jth step mass error by

Bi=(m;—m,;_)m,_,, {31)
where m, is the result of (19) applied with the mid-point

quadrature rule. Using 8§, = 1, it has been proposed in [10]
to use

0,=6,_,(1+1008B;) (32)
if B,>0and B,> B, _, and

if B,>0and B, _, — B, < B,/3. Similar choices are made for
the case of B; < 0; otherwise set 8, =6, _,.

In the next section, we experiment on our time step
selection strategy using both the minimization and mass
balance choices for the predictor step.

6. NUMERICAL EXPERIMENTS

We have taken four typical semiconductor processing
structures as shown in Figs. 3-6, where the physical sizes are
measured in micrometers. The initial profiles for our test
problems are obtained from the 10n implantation menu of
COMPOSITE {9], which are Pearson IV distributions.
Detailed data specifications are shown in Table I, where
Tests 5 and 6 use two dopants.

3.0
Poly-Silicon
2.0
Silicon
0.0
0.0 1.0 2.0

FIG. 3. Substrate for Test Examples | and 2.
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1.5
Nitride
1.0
Silicon
0.0
9.0 0.3 04 1.0

FIG. 4. Substrate for Test Example 3.

We have run all six test examples with both the existing
ASWR method of [10] and our modified version of the
ASWR method. With our modified version, we have used
the following strategies:

« For boron/phosphorus/antimony implants, the
selection method of Section 5.1 is used;

« For arsenic the
Section 5.2 is used;

implant, selection method of

« The predictor step uses the second approach of
Section 5.3.

1.5
Poly- Poly-
Silicon Silicon
1.0
Silicon
¢.0
0.0 0.3 0.7 1.0

FIG. 5. Substrate for Test Example 4.
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1.5
Poly-Silicon
1.0
Silicon
0.0
0.0 0.25 0.75 1.0

FIG. 6. Substrate for Test Examples 3 and 6.

We remark that the above combination of ideas offers a
robust method from experimental observations, although it
gives by no means the best results in some cases. The
numerical resuits are summarised in Table I1, where infor-
mation on the number of time steps taken, the CPU user
time on a Sun-sparc 1 and the mass balance error Q, is
given. The mesh data given are for the finite difference (FD)
mesh, and the number of boxes for the finite element {FE)
discretization is about half of the number of FDM mesh
lines in both directions. For example, a 65 x 65 FD mesh
corresponds to [ (65— 1)/2]1x[(65—1)/2] FE boxes.

Results have clearly demonstrated that our modified time
stepping strategy generally shows better performance com-
pared with the existing ASWR strategy, which uses heuristic
time stepping ideas (see [10]). Our method of estimating
the local truncation errors for the ASWR Petrov—-Galerkin
finite element method with B-splines appears to be new and
simple.

TABLE 1

Ion Implantation and Diffusion Data

Energy Dose

Test Dopants (Kev) {cm~?%} Temperature/ Time {Min}
1 Boron 30 1.0E12 1000 40
2 Phosphorus 50 L.OELS 1000 50
3 Antimony 25 10E14 1100 2
4 Arsenic 40 1.0E14 1100 2
5 { Boron 30  1DE13 1100 1
Phosphorus 25 L.OE12
Boron 20 1.0EL2 1000 5
{ Phosphorus 50 1.0E15
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TABLE 11
ASWR Test Results of Six Examples

Method Test  Mesh  Time steps CPU Error @,

Existing 1 85 % 85 k() 535 1.SE-3
ASWR 2 65 % 65 123 1250 —~76E—4
3 65 %65 86 971 —13E-3
4 129x129 69 3000 —33E—-4
5 85x 85 62 2000 —1.0E—3
—30E-2
[ 65 x 65 50 992 ~11E-2
' 1L9E -3
Modified I 85x 85 13 277 28E-3
ASWER 2 65%x 65 43 574 24E -5
3 65 x 65 - 28 428 —19E—4
4 129x129 59 2890 ~1.5E—4
5 83 x 83 22 1150 2DE-3
LSE -3
b 65 % @GS te 443 —47E-13
—57E-4
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